
Spreading of damage in a two-dimensional Ising model with dipolar interactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 6073

(http://iopscience.iop.org/0305-4470/33/35/301)

Download details:

IP Address: 171.66.16.123

The article was downloaded on 02/06/2010 at 08:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/35
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 6073–6080. Printed in the UK PII: S0305-4470(00)13717-5

Spreading of damage in a two-dimensional Ising model with
dipolar interactions

Pablo M Gleiser and Francisco A Tamarit†
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Abstract. In this work we use the spreading of damage technique to study the dynamical
properties of a two-dimensional Ising model with competition between ferromagnetic exchange
(J0) and antiferromagnetic dipolar (Jd) interactions. In recent works it was shown that, depending
on the ratio δ = J0/Jd, the ground state of the model corresponds to ferromagnetic stripes whose
width increases with δ. In this striped phase the system displays a slow dynamics, characterized by
the formation and growth of magnetic domains. We found that, within these phases, the spreading
of damage technique allows one to identify two dynamical phases, with a behaviour similar to that
observed in the Sherrington–Kirkpatrick model of spin glasses.

Magnetic models with competition between nearest-neighbour ferromagnetic and long-range
antiferromagnetic dipolar interactions have been widely used during recent years in the
modelling of many interesting magnetic phenomena. In particular, bi-dimensional systems
in which the magnetic moments are aligned perpendicular to the plane have proven to be
very useful in analysing ultrathin magnetic films, magnetic ordering of rare-earth subsystems
of high-Tc superconductors and related layered compounds, avoided phase transitions in
supercooled liquids and charge density waves in doped antiferromagnets, among others (see [1]
and references therein). Perhaps the simplest way to take into account the interplay between
ferromagnetic and antiferromagnetic ordering is to consider a bi-dimensional Ising model
governed by the following Hamiltonian:

H = −J0

∑

〈i,j〉
σiσj + Jd

∑

(i,j)

σiσj

r3
ij

(1)

where the spin variable σi = ±1 is located at site i of a square lattice, the sum
∑

〈i,j〉 runs
only over all pairs of nearest-neighbour sites, while the sum

∑
(i,j) runs over all distinct pairs

of sites of the lattice and rij is the distance (in crystal units) between sites i and j . J0 and
Jd > 0 are the ferromagnetic exchange and antiferromagnetic dipolar coupling parameters
respectively. For simplicity, we rewrite this Hamiltonian as follows:

H = −δ
∑

〈i,j〉
σiσj +

∑

(i,j)

σiσj

r3
ij

(2)

with δ = J0/Jd.
In a recent work MacIsaac et al [1] studied the thermodynamics of the model and presented

its finite-temperature phase diagram, obtained by means of a Monte Carlo simulation, which
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Figure 1. Phase diagram for a 16 × 16 system. The FF phase indicates that a single ferromagnetic
stripe is observed due to the finite size of the simulated system.

we reproduce in figure 1. For δ < 0.85, they found that the ground state of Hamiltonian (2)
is the antiferromagnetic state. For δ > 0.85 the antiferromagnetic state becomes unstable
with respect to the formation of striped domain structures, that is, to state configurations with
spins aligned along a particular axis, which form a ferromagnetic stripe of constant width
h, so that spins in adjacent stripes are antialigned, resulting in a superlattice in the direction
perpendicular to the stripes. The width h of the stripe increases with δ, and it is important
to stress that the system never becomes ferromagnetic for finite values of δ [1] (an effect that
cannot be observed in figure 1 due to the finite size of the samples).

Concerning its dynamics, the model is characterized by the formation and growth of
magnetic domains, due to the competition between the exchange and dipolar interactions,
which at low temperatures generate very large relaxation times. Sampaio et al [2] have shown
the existence of two different regimes for the relaxation of the magnetization, depending on
the value of δ. For δ > δc ∼ 2.7 the magnetization relaxes exponentially, with a relaxation
time that depends both on temperature and δ, while for δ < δc the magnetization presents a
power-law decay, with an exponent independent of δ. Toloza et al [3] have analysed the time
evolution of the two-time auto-correlation function

C(t, tw) = 1

N

∑

i

〈σi(t + tw)σi(tw)〉 (3)

after the system has been quenched (from infinite temperature) into some non-equilibrium
state, where 〈· · ·〉 means an average over different realizations of thermal noise and tw is the
waiting time, measured from the quenching time t0 = 0. They found that the system presents
ageing, i.e. a dependence on the previous history of the system: while for equilibrium states
one expects that C(t, tw) depends on t and tw only through the difference t − tw, here it depends
on both times, indicating that the system does not equilibrate in finite scales. Even more, for
0.85 < δ < δc ∼ 2.7 the function C(t, tw) obeys the dynamic scaling law

C(t, tw) ∼ cδ

ln(t)

ln[τ(tw)]
(4)
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as predicted by an activated scenario [4] proposed for spin glasses, while for δ > δc, where
magnetization relaxes exponentially and the short-range ferromagnetic interactions dominate
over the dipolar ones, C(t, tw) obeys the scaling law

C(t, tw) ∼ cδ

t

τ (tw)
. (5)

Note that this behaviour is associated with an algebraic growth of the domain size L(t) ∝ tφ in
systems with ferromagnetic ground state [5–7]. Through a study of the spin auto-correlation
function and the conjugated response function to an external magnetic field, Stariolo and
Cannas [8] have noted that this system violates the fluctuation–dissipation theorem.

In this paper we present a numerical study of the spreading of damage for the system
described by Hamiltonian (2) (for a recent review of the technique see [9] and references
therein). The main idea of the method consists in measuring the time dependence of the
Hamming distance between two replicas with different initial conditions that evolve subjected
to the same thermal noise (in numerical Monte Carlo simulations, both replicas are updated
using the same random number sequence). Depending on whether the final Hamming distance
between the two replicas is non-zero (the damage spreads) or vanishes (the damage heals),
one can identify chaotic or non-chaotic behaviour, respectively.

Although it was shown that the spreading or healing of the Hamming distance depends
not only on the intrinsic properties of the model (as one could have expected), but also on
the specific algorithic implementation [10], the technique has proven to be very useful in
determining critical exponents and critical temperatures. It has been observed that, by analysing
the dependence of the long-time Hamming distance on the initial damage between replicas
and on the temperature, one can identify dynamical critical temperatures separating different
regimes. In particular, if a system is subjected to heat bath dynamics, one can associate a
dynamical critical temperature with each static critical temperature, allowing a very accurate
and efficient way to determine critical temperatures and critical exponents. (The opposite is
not true, and generally one finds dynamical critical temperatures inside a static phase, i.e. not
associated with a static transition [11, 12].)

We present the results of the long-time Hamming distance as a function of the temperature
T for two values of the parameter δ: for δ = 2 < δc, where the magnetization decays as a
power law and the ground state corresponds to stripes of width h = 1, and for δ = 4 > δc,
where the magnetization decays exponentially and the ground state corresponds to stripes of
width h = 2 (see figure 1).

We simulated systems of size N = L × L, with L ranging from 16 to 40 (with particular
emphasis on L = 20), with free boundary conditions. The system was subjected to a heat bath
Monte Carlo dynamics, and time was measured in units of whole Monte Carlo sweeps over
the lattice of N spins.

The procedure of the spreading of damage is as follows: for a given value of δ and T we
let the system {σ A

i } evolve a transient time, and then we make a copy of the system, {σ B
i }. We

introduce damage in {σ B
i } by flipping a fraction of the spins. Given these two different initial

conditions we let both systems evolve under the same thermal noise, i.e. by using the same
random sequence to update both systems. We measure the time evolution of the Hamming
distance between replicas, defined as

D(t) = 1

2N

N∑

i

|σ A
i (t) − σ B

i (t)|. (6)

In order to calculate a configurational average 〈D(t)〉 of the Hamming distance over initial
states and random sequences we repeated the simulations for S different samples for each value
of T and δ.
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Figure 2. Averaged final Hamming distance 〈d〉 versus temperature, for δ = 2.0, given two initial
damages: d(0) = 1.0 (circles) and 0.35 (squares).

Note that, if at a given time both replicas become identical, they will remain identical for
all subsequent times. This was taken into account by considering the fraction P(t) of samples
that did not become identical at time t , given by

P(t) = lim
S→∞

S1(t)

S
(7)

where S1 is the number of samples, from a total of S simulated samples, that are still different
at time t . Using this survival probability we may write

〈D(t)〉 = 〈d(t)〉P(t) (8)

where 〈d(t)〉 is the Hamming distance measured only over the S1(t) surviving samples at time
t .

First we present the results for δ = 2.0, where the ground state corresponds to stripes of
width h = 1. In figure 2 we plot the averaged final Hamming distance 〈d〉 versus temperature
T .

We can clearly identify two phases:

• in the low-temperature phase, for T < Td = 0.825 ± 0.025, the final value of 〈d〉 is
non-zero, and it depends on the initial value of d;

• in the high-temperature phase, T > Td , the final value of 〈d〉 is also always non-zero but
its value is independent of the initial damage.

As already mentioned, the spreading of damage technique with heat bath dynamics has proven
to be a very accurate method for determining thermodynamical critical temperatures [10].
This is due to the fact that damage transitions seem to agree with thermodynamical transitions.
This becomes particularly relevant for those models whose thermostatics cannot be analytically
solved and whose low-temperature phase has slow dynamics. In that case, it is very hard to
determine transition temperatures by means of numerical simulations of equilibrium quantities.
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Figure 3. τm versus temperature, for δ = 2.0, and for three different system sizes: L = 20, 32
and 40.

The model we are considering in this letter satisfies these two properties: very little is known
about its thermodynamical phase diagram (as far as we known, the results of MacIsaac et al [1]
reproduced in figure 1 are the most accurate calculations of the phase diagram) and its dynamics
is a slow one, like those observed in glasses and coarsening (depending on δ). In order to
determine with better accuracy the critical temperature of this model, we calculated the average
time τm the system needs for the two replicas, which are initially in opposite configurations
(d(0) = 1), to meet in phase space. One expects that this time increases with system size,
diverging for L → ∞, as one approaches the critical temperature Td. In figure 3 we present
the behaviour of τm(L) versus T (for L = 20, 32 and 40) in the high-temperature phase. We
found that this quantity diverges at a critical temperature Td = 0.825 ± 0.025, which seems to
agree with that observed in [1].

Observing the temporal behaviour of the final Hamming distance 〈D(t)〉 in the high-
temperature phase, one can identify two different regimes, as can be seen in figure 4, where
we plot 〈D(t)〉 versus t for two different temperatures, namely, 1.0 and 3.5 (both above Td)
and two different initial damages, D(0) = 1.0 and 0.35, for a system of linear size L = 20.

For T = 3.5 the behaviour could be associated with a dynamical phase with null value
of the final Hamming distance, as usually occurs in paramagnetic phases at high enough
temperatures. Nevertheless, a very careful finite-size study reveals a very different behaviour.
In figure 5 we present the fraction of surviving replicas P(t), the Hamming distance 〈D(t)〉
and also 〈d(t)〉 versus t , for T = 3.5 when the initial damage is D(0) = 1.0 and N = 20×20.
The results presented correspond to S = 500 samples.

For short times P(t) remains always equal to one while 〈D(t)〉 decays. This behaviour
can be associated with the formation of basins in phase space separated by energy barriers that
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Figure 4. Average Hamming distance 〈D(t)〉 when δ = 2.0, for temperatures T = 1.0 and 3.5
with two different initial damages: D(0) = 1.0 and 0.35, for a system with linear size L = 20.
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Figure 5. Fraction of surviving replicas P(t), Hamming distances 〈D(t)〉 and 〈d(t)〉 for T = 3.5,
when D(0) = 1.0, for a system with linear size L = 20.

avoid the two replicas meeting. After this transient (that depends on the system size N ), the
system enters a second regime in which P(t) and 〈D〉 decay exponentially in such a way that
〈d〉 remains constant, indicating that the surviving replicas are always separated by the same
distance in phase space.

In this regime the system is very sensitive to finite-size effects, as can be seen in figure 6,
where we present the variation of P(t) at T = 3.5 as system size increases (L = 16, 20 and 32).
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Figure 6. Fraction of surviving replicas P(t) versus time for three different system sizes: L = 16,
20 and 32.

We can conclude that, in the thermodynamical limit (L → ∞), the survival probability will
remain always equal to one, indicating that the adequate quantity to characterize the damage
is 〈d〉, which does not depend on N .

It is important to stress that, as far as we know, the unique magnetic model that displays a
similar behaviour is the Sherrington–Kirkpatrick model, for which it has been found that d(T )

decreases as T −2, keeping a non-zero value for all finite temperatures.
A similar qualitative behaviour of D(t), P(t) and d(t) was observed for δ = 4.0. In

figure 7 we present the behaviour of 〈d(t)〉 as a function of temperature, and again we observe
two different regimes, now with critical temperature Tc = 2.225 ± 0.025. Note that, for this
value of δ, the dynamics corresponds to that of a coarsening process, while for the former case
δ = 2 the dynamics is similar to that of a short-range spin glass. Nevertheless, as occurred
when the violation of the fluctuation–dissipation theorem was studied [8], the spreading of
damage technique does not reveal any sensitivity to this difference.

We have studied the behaviour of the final Hamming distance in two different dynamical
phases: δ = 2.0 and 4.0. When δ = 2.0 in the low-temperature phase, the dynamics is
characterized by a power law decay of the magnetization and an aging behaviour characteristic
of spin glasses, while for δ = 4.0 also in the low-temperature phase, the magnetization
decays exponentially and the dynamics is governed by a coarsening process. We found that
the spreading of damage technique, applied to system (2) subjected to a heat bath dynamics
(remember that this technique is very sensitive to the stochastic dynamics implemented), reveals
a dynamical phase transition that seems to agree with that separating the high-temperature
paramagnetic phase from the low-temperature striped phase. Concerning the paramagnetic
phase, we observed that its dynamical behaviour is similar to that observed in the SK model,
where it always has a non-zero value that is independent of the initial Hamming distance. This
result is very unusual in magnetic systems, and we believe it could be associated with the
long-range nature of the interactions. In the low-temperature phase (striped phase) the damage
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Figure 7. Averaged final Hamming distance 〈d〉 versus temperature, for δ = 4.0, given two initial
damages: d(0) = 1.0 (circles) and 0.35 (squares).

displays a strong dependence on the initial damage, but we could not identify any sensitivity
of the technique to distinguish between glassy and coarsening dynamics.

Acknowledgments

The authors would like to thank Julio H Toloza for helpful discussions. This work was
partially supported by grants from Consejo Nacional de Investigaciones Cientı́ficas y Técnicas
Conicet (Argentina), Consejo Provincial de Investigaciones Cientı́ficas y Tecnológicas Conicor
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